

BCILAB and Applications to EEG Cognitive Interfaces

Christian A. Kothe SCCN, INC, UCSD

Outline

- 1. High-level View
- 2. Application Areas and Examples
- 3. Basic Underlying Theory
- 4. The BCILAB Toolbox
- 5. GUI and Scripting Tour
- 6. Methods Tour
- 7. Current and Future Directions
- A. Further Reading

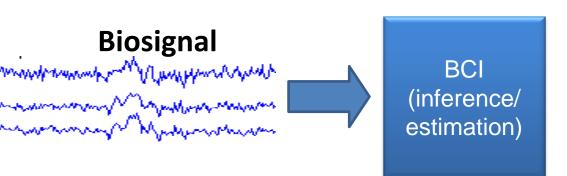
1 High-Level Overview

BCI: Our Working Definition

 "A system which takes a biosignal measured from a person and predicts (in real time / on a single-trial basis) some abstract aspect of the person's cognitive state."

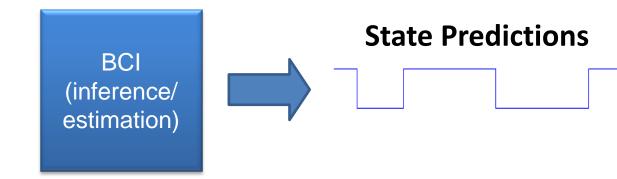
Biosignals and other Inputs

- Brain Signals: EEG, fNIRS, MEG, fMRI, ECoG, ...
- **Peripheral Measures:** ECG, EMG, EOG, GSR, Respiration, Gaze/Pupillometry, Motion Capture
- **Context Information:** Program/System State, Vehicle Speed, ...



BCI Estimates/Predictions

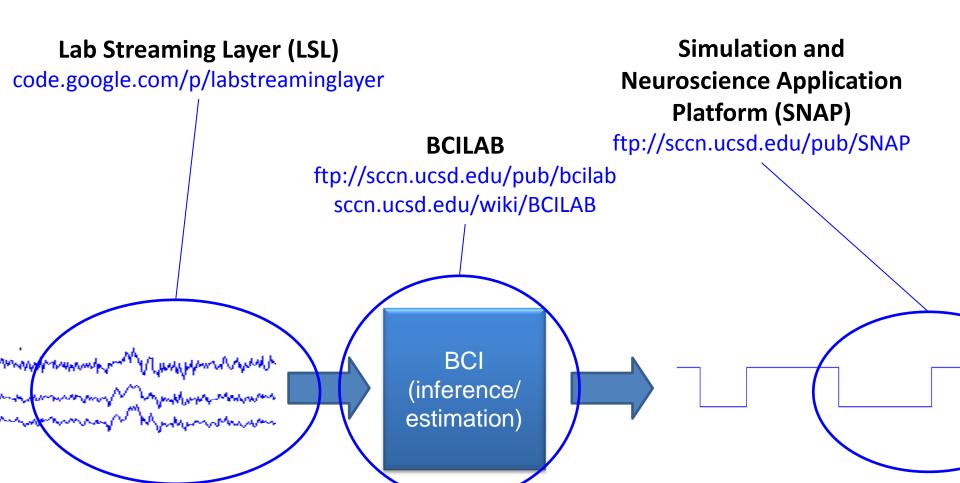
- Any aspect of the physical brain state that can be recovered from observable signals (discrete, continuous, multivariate, ...)
- **Tonic state:** degree of "relaxation", cognitive load,...
- Phasic state: attention deployment, imagined vowel
- Event-related state: surprised/not surprised, committed error, event noticed/not noticed, ...



SCCN Software Tools for BCI

EEGLAB, MoBILAB, SIFT, ...

(not discussed here today)



2 Application Areas and Examples

Communication and Control for the Severely Disabled

- Severe Disabilities: Tetraplegia, Locked-in syndrome
- Speller Programs, Wheelchairs, Robots, ...

P300 Speller

KU Leuven

Brain2Robot (Fraunhofer FIRST)

Other Health Uses

• Sleep Stage Recognition, Neurorehabilitation

Takata et al., 2011

iBrain

Operator Monitoring

 Braking Intent, Lane-Change Intent, Workload, Fatigue, Alertness, Attention, ...

Haufe et al., 2011

The MITRE Corp., 2011

Entertainment, Social, etc.

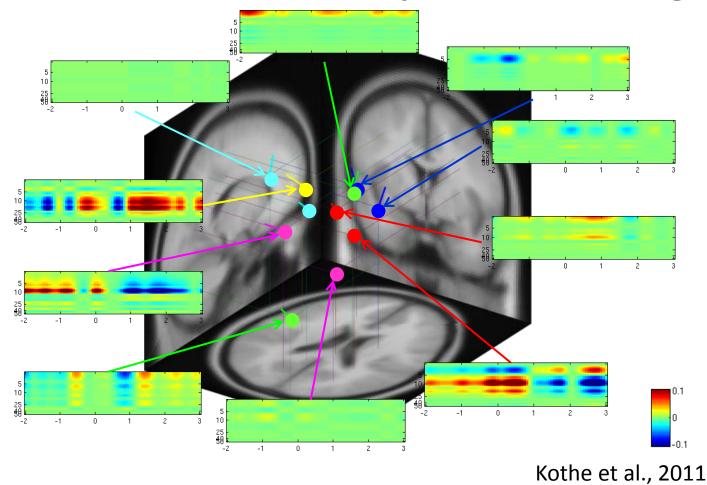
Control by Thought, Mood Assessment/Display

Jedi Game Prototype

necomimi "neurowear"

Neuroscience

• Multivariate Pattern Analysis / Brain Imaging



4 The BCILAB Toolbox

Software Environment For:

- Brain-Computer Interface Design (Cognitive Monitoring)
- Methods Research:
 - Design & rapid prototyping of new methods & methods from literature
 - Offline testing, performance evaluation & batch comparison, visualizations
 - Simulated online testing

Rapid Prototyping:

- Real-time use and testing of BCIs
- Prototype deployment

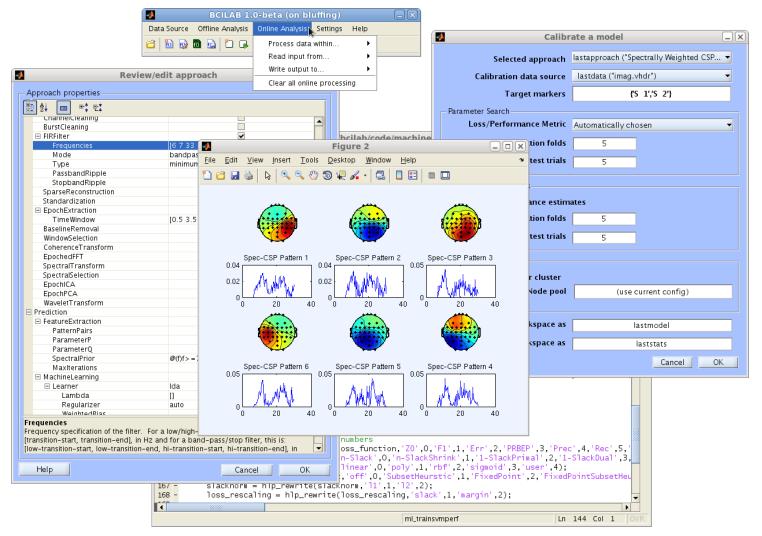
Basic Goals

- Usable by beginners and experts to serve both the EEGLAB community and advanced needs
- Include a large array of methods, both conventional and state-of-the art, to rapidly set up well-performing BCIs and conduct broad comparison studies
- Provide convenient plugin frameworks and reusable backend tools to allow for rapidly prototyping of methods

Facts & Figures

- Developed since 2010 at SCCN, UCSD (primarily by me)
- Precursor was the PhyPA toolbox (Kothe & Zander, 2006-'09)
- Built on top of EEGLAB (Delorme & Makeig, 2004)
- The largest open-source BCI toolbox by methods and algorithms (100+) as of 2011
- Offline and online processing both in MATLAB, same code base, Win/Linux/MacOS, 32/64bit
- Extensive documentation (hundreds of pages of help text, manual, wiki, 400+ lecture slides online)

BCILAB Sample GUI



http://sccn.ucsd.edu/wiki/BCILAB ftp://sccn.ucsd.edu/pub/bcilab

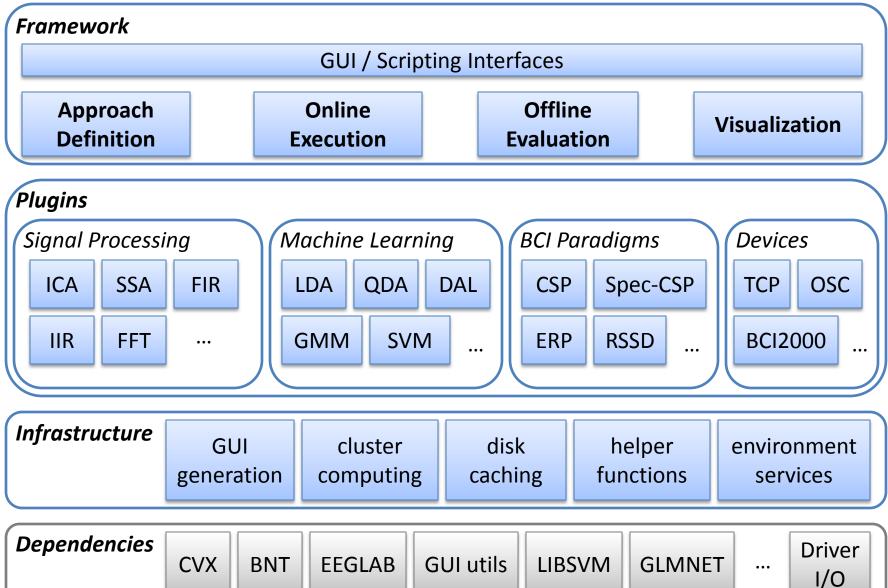
BCILAB Sample Script

 Benchmarking 5 state-of-the-art methods on a 136-subject data set (on a cluster):

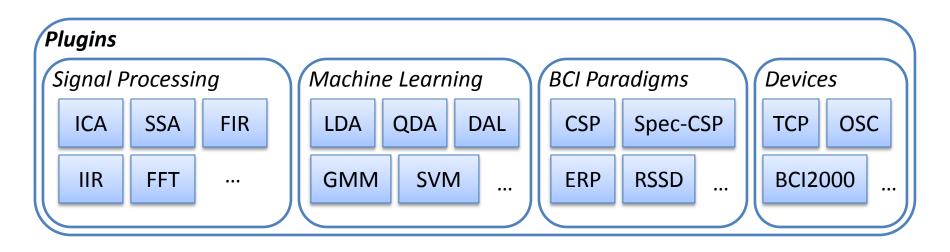
```
epoch = [-0.2 \ 0.8];
wnds = [0.25 \ 0.3; 0.3 \ 0.35; 0.35 \ 0.4; 0.4 \ 0.45; 0.45 \ 0.5; 0.5 \ 0.55; 0.55 \ 0.6];
apps.wmeans lda = {'Windowmeans' 'SignalProcessing', {'IIRFilter', {[0.1 0.5], 'highpass'}, ...
    'EpochExtraction', epoch, 'SpectralSelection', [0.1 15] }, 'Prediction', {'FeatureExtraction', {'wnds', wnds}}};
apps.wmeans vblogreg = {'Windowmeans' 'SignalProcessing', {'IIRFilter', {[0.1 0.5], 'highpass'}, ...
    'EpochExtraction', epoch, 'SpectralSelection', [0.1 15] }, 'Prediction', {'FeatureExtraction', {'wnds', wnds}, ...
    'MachineLearning', {'Learner', {'logreg', [], 'variant', 'vb-iter'}}};
apps.dalfine = {'DALERP', 'SignalProcessing', {'EpochExtraction', epoch}, ...
    'Prediction', {'MachineLearning', {'Learner', {'dal', 'lambdas', 2.^(10:-0.125:1), 'solver', 'cg'}}};
apps.raw glc = {'DataflowSimplified' 'SignalProcessing', {'IIRFilter', {[0.1 0.5], 'highpass'}, ...
    'EpochExtraction', epoch, 'SpectralSelection', [0.1 15] }, ...
    'Prediction', {'MachineLearning', {'learner', {'dal', 2.^(12:-0.125:1), 'regularizer', 'glc', 'shape', [256 NaN]}}};
apps.wavelet glc = {'DataflowSimplified' 'SignalProcessing', {'IIRFilter', {[0.1 0.5], 'highpass'}, ...
    'EpochExtraction', epoch, 'SpectralSelection', [0.1 15], 'wavelet', 'on'}, ...
    'Prediction', {'MachineLearning', {'learner', {'dal', 2.^(12:-0.125:1), 'regularizer', 'glc', 'shape', [256 NaN]}}};
results = bci batchtrain('Data', '/data:/grainne/ERN/*.vhdr', 'Approaches', apps, ...
```

'TargetMarkers', {{ 'S101', '102'}, { 'S201', '202'}});

Toolbox Organization



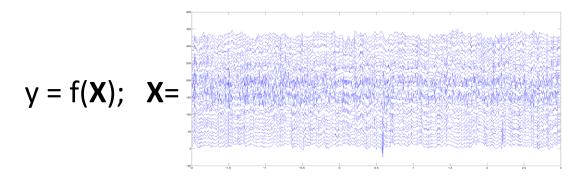
3 A Close Look at Components



Component 1: Predictive Mapping

Central Predictive Mapping

• A BCI (with limited memory of the past) can be viewed as a mathematical function *f*:



y= "subj. excited" (+1) "subj. not excited" (-1)

• The functional form is arbitrary, for example

 $y = \operatorname{sign}(\operatorname{var}(WX) + b)$

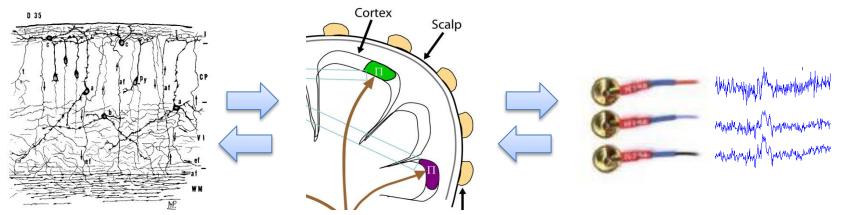
The mapping involves free parameters, here
 W and b, and data from a *sliding window* X

Choice of a Functional Form

Reflects the relationship between observation (data segment X) and desired output (cognitive state parameter y)

Choice of a Functional Form

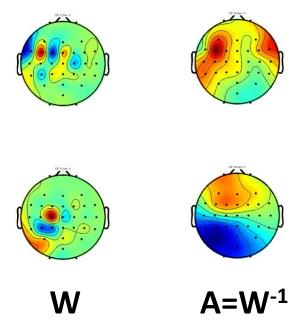
- Reflects the relationship between observation (data segment X) and desired output (cognitive state parameter y)
- Based on some assumed generative mechanism (forward model) – or ad hoc



• Remember: Functional form is the inverse mapping!

Key Ingredient: Spatial Filter

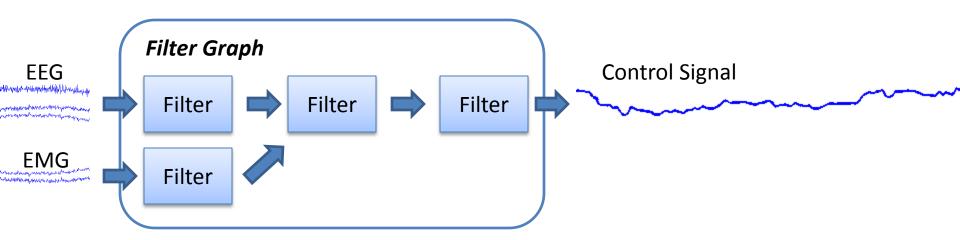
- Linear inverse of volume conduction effect between sources S and channels X
 - X = AS (forward)
 - S = WX (inverse)



Component 2: Signal Processing

Role of Signal Processing

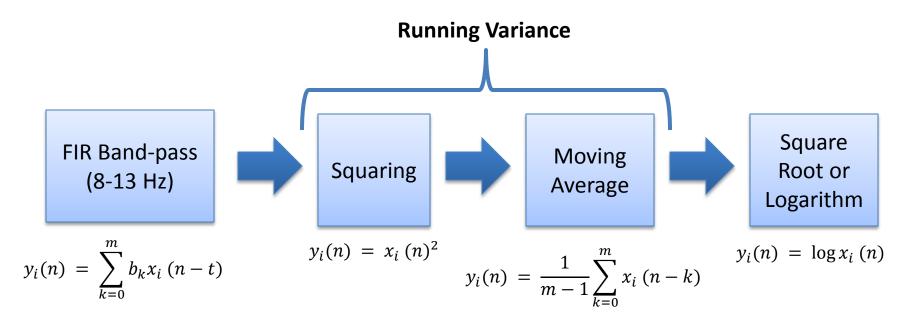
 BCILAB allows to implemented BCIs using a network of digital signal processing blocks ("filters")



• Relevant filter classes: Spatial Filters, Temporal Filters, Spectral Filters, Spatio-Temporal Filters, Domain Transforms (e.g. DFT)

Role of Signal Processing

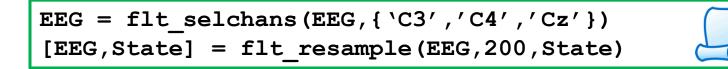
 Concrete Toy Example: Feed the amplitude of a brain idle oscillation (e.g. 10 Hz alpha associated with relaxation) from one EEG channel back to the user/subject



Filter Components In Practice

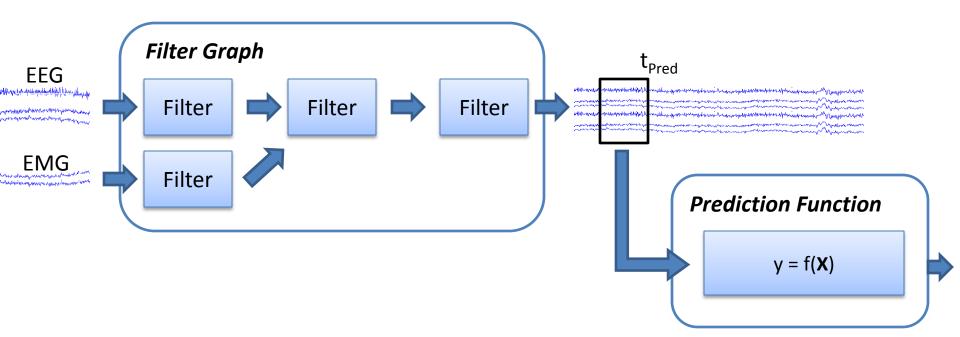
• Filters can operate on continuous signals...

... or on segmented ("epoched") signals:



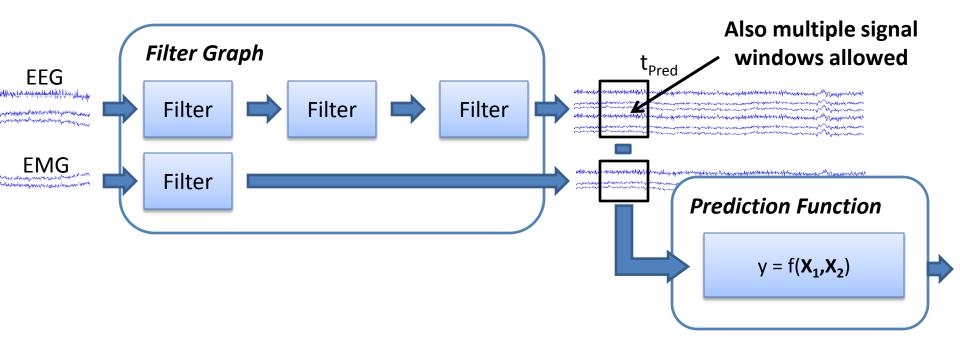
Combined Online Processing

 Both frameworks are complementary, rather than contradictory, and are in practice often used *in combination*, e.g. to minimize computational costs



Combined Online Processing

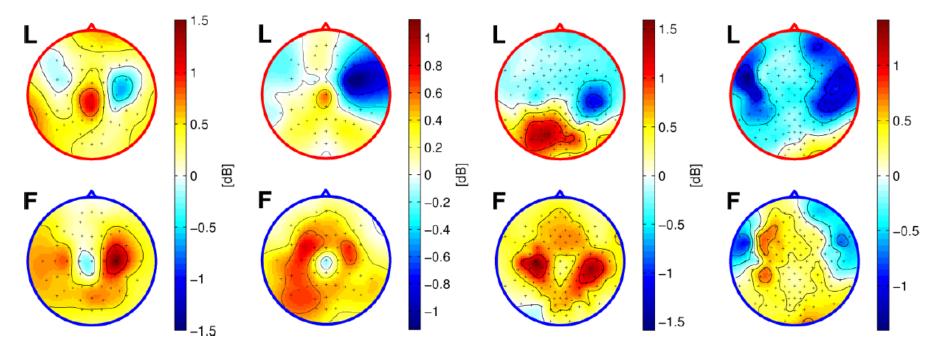
 Both frameworks are complementary, rather than contradictory, and are in practice often used *in combination*, e.g. to minimize computational costs



Component 3: Machine Learning

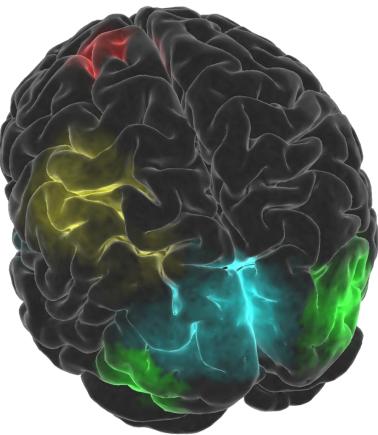
The Problem of Unknown Parameters

 Processing depends on unknown parameters (person-specific, task-specific, otherwise variable) – e.g., per-sensor weights as below:



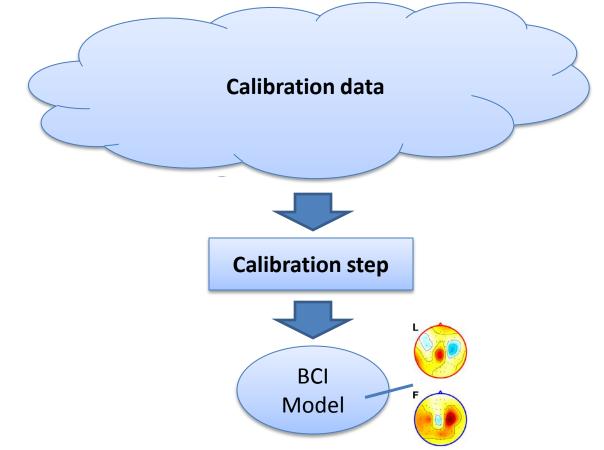
Reasons for Parameter Uncertainty

- Folding of cortex differs between any two persons
- Relevant functional map differs across individuals
- Sensor locations differ across recording sessions
- Brain dynamics are nonstationary at all time scales



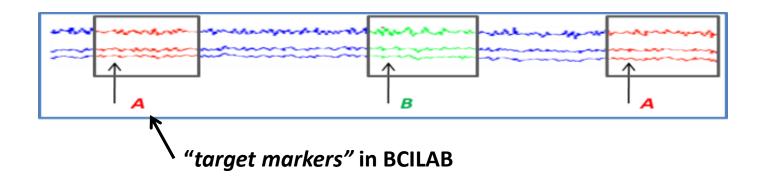
Solution: Calibration

• Calibration / training data can be used to estimate parameters, during a separate calibration step

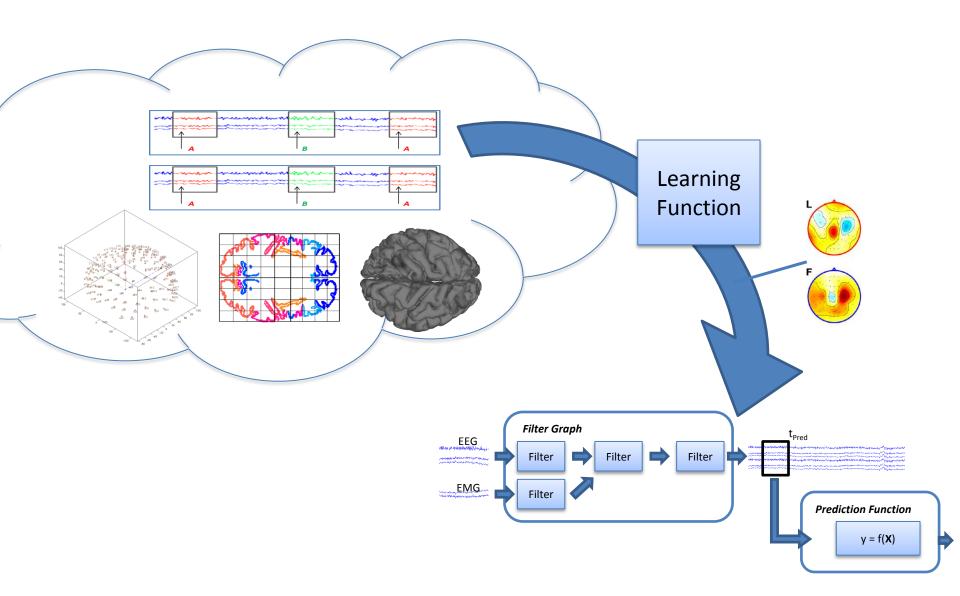


Calibration Data

- Many possible kinds of data could be used
- Best known type of calibration data: *example data*, i.e. examples of EEG of a person being excited, not excited, etc.
- Collected in a special *calibration recording* (before actual online use of the BCI)

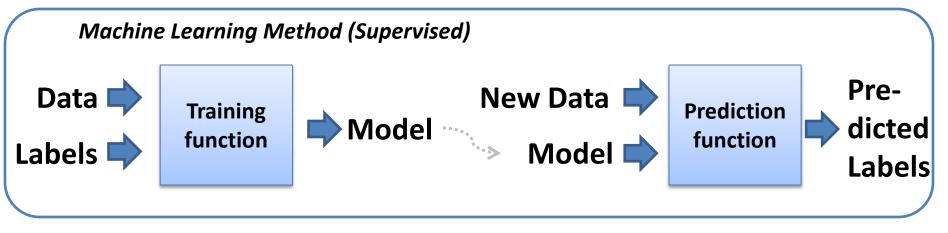


Big-Picture Information Flow



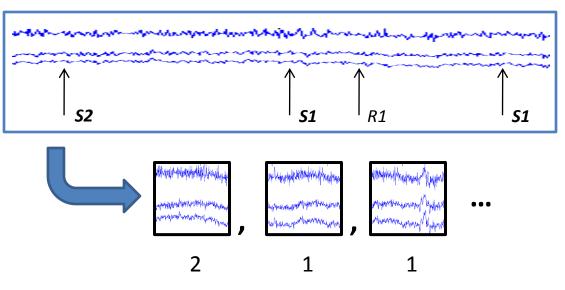
Machine Learning Framework

- Large field with 100s of algorithms (LDA, SVM, GMM, ANNs, logistic regression, ...)
- Most methods conform to a common framework of a *training function* and a *prediction function*



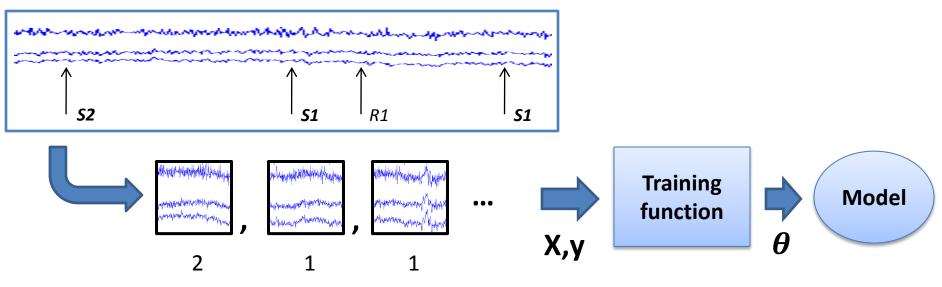
Machine Learning In Practice

- Often, one trial segment (sample) is extracted for every target marker in the calibration recording and is used as *training exemplar* X_k
- Its associated label y_k can be deduced from the target marker



Machine Learning In Practice

- Often, one trial segment (sample) is extracted for every target marker in the calibration recording and is used as *training exemplar* X_k
- Its associated label y_k can be deduced from the target marker

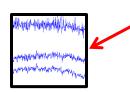


Component 4: Feature Extraction

Feature Extraction

- **Caveat:** Off-the-shelf machine learning methods often do *not work very well* when applied to raw signal segments of the calibration recording
 - too high-dimensional (too many parameters to fit)
 - too complex structure to be captured (too much modeling freedom, requires domain-specific assumptions)

1000s of degrees of freedom!



Feature Extraction

- **Typical Solution**: Introduce additional mapping (called *"feature extraction"*) from raw signal segments onto feature vectors which extracts the *key features* of a raw observation
 - output is usually of lower dimensionality
 - hopefully statistically "better" distributed (easier to handle for machine learning)

Concrete Example Task

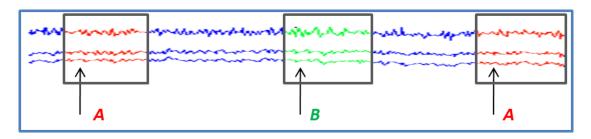
- Flanker Task: The experiment consists of a sequence of ca. 330 trials with inter-trial interval of 2s +/- 1.5s
- At the beginning of each trial, an arrow is presented centrally (pointing either left or right)
- The arrow is flanked by congruent or incongruent "flanker" arrows (preceding the center by a few ms):

$$\leftarrow \leftarrow \leftarrow \leftarrow$$

• The subject is asked to press the left or right button, according to the central arrow direction, and makes frequent errors (ca. 25%)

Approach

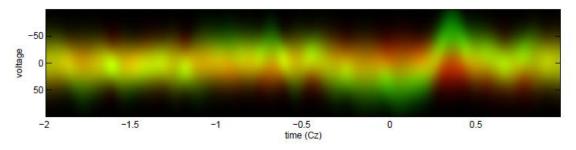
- Calibration recording is band-pass filtered between 0.5Hz and 15Hz
 - 0.5Hz lower edge removes drifts
 - 15Hz upper edge leaves enough room for sharp ERP features
- Epochs are extracted for each trial and label is set to A for incorrect trials and B for corrects

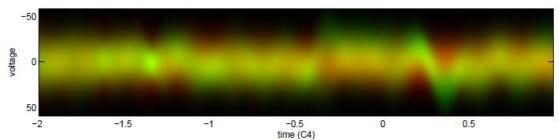


Actual Data

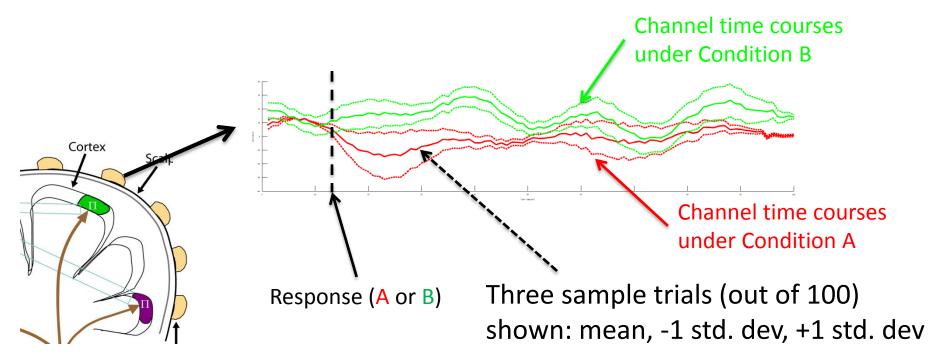
 Time courses for all trials super-imposed (color-coded by class) – but here different task



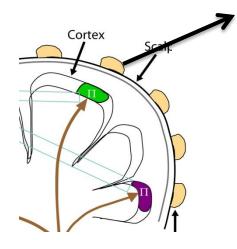


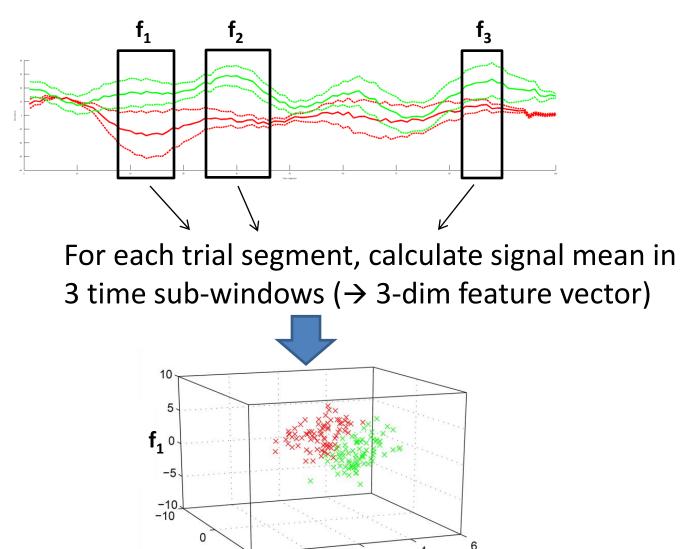


Extracted Epochs



Extracting Linear Features





2

0

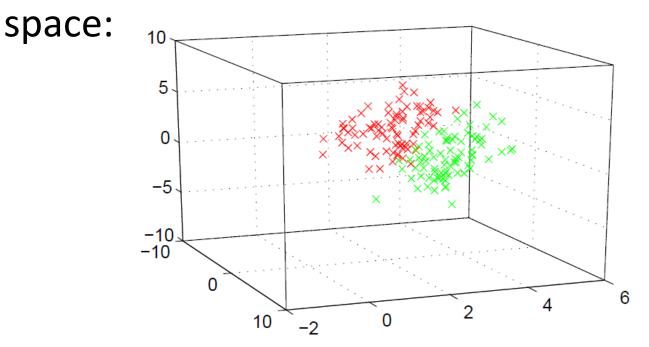
10

Τ2

-2

Resulting Feature Space

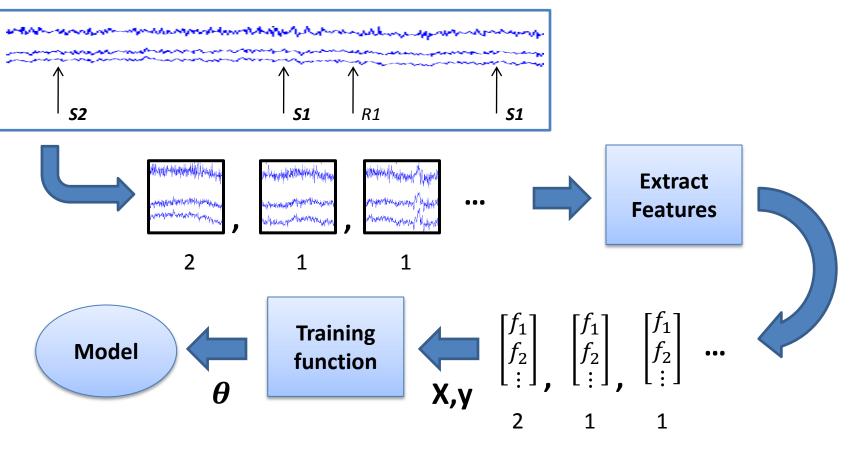
 Plotting the 3-element feature vectors for all error trials in red, and non-error trials in green, we obtain two distributions in a 3d



Note that across all channels this space has in fact 3 x #channels dimensions!

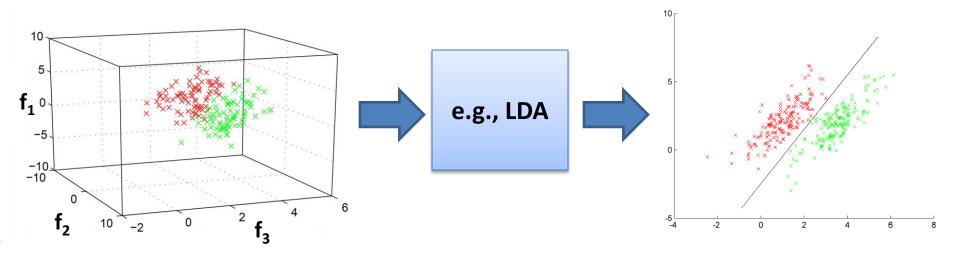
ML with Feature Extraction

• Including the feature extraction, the analysis process is as follows:



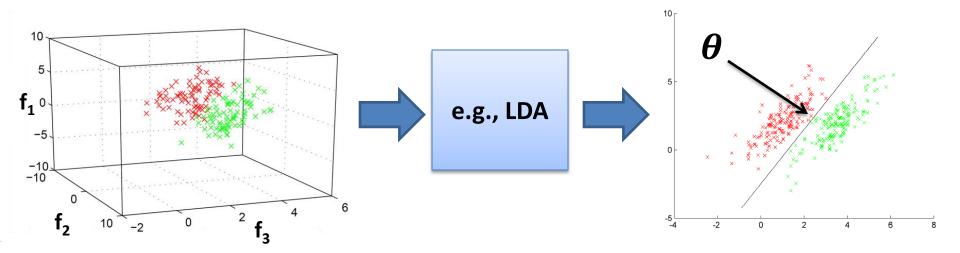
Machine Learning Continued

• The feature vectors are passed on to a machine learning function (e.g., Linear Discriminant Analysis)



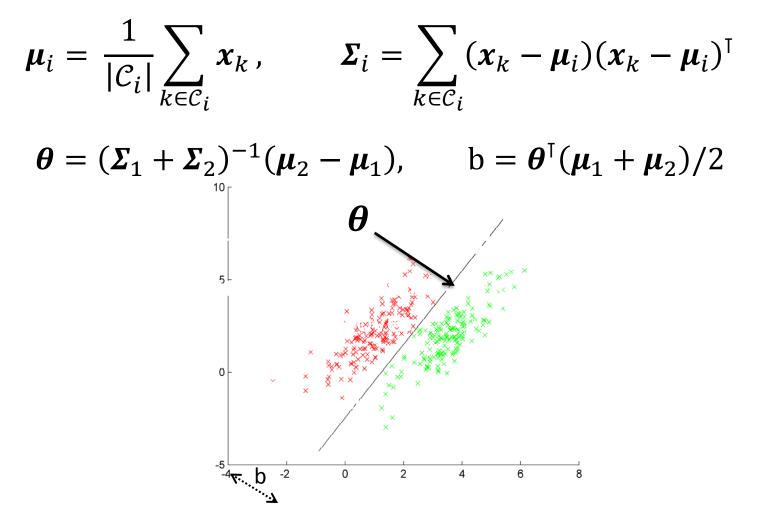
Machine Learning Continued

- The feature vectors are passed on to a machine learning function (e.g., Linear Discriminant Analysis)
- ... which determines a parametric predictive mapping



Simple 2-class LDA In a Nutshell

• Given feature vectors x_k (in vector form) in C_1 and C_2 ,



Resulting Predictive Mapping and Model

• LDA produces parameters of a linear mapping

$$y = \theta x - b$$

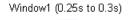
• For classification, the mapping is actually *non-linear*:

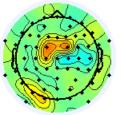
$$y = sign(\theta x - b)$$

 The learned model with its person-specific parameters here consists of (θ, b); generally it could include adapted signal-processing parameters, feature-extraction parameters, etc.

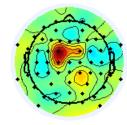
Spatial Filters Visualized

• Topographically mapped, the following filters

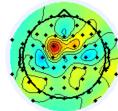




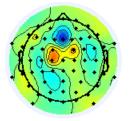
Window2 (0.3s to 0.35s)



Window3 (0.35s to 0.4s)

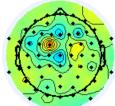


Window4 (0.4s to 0.45s)

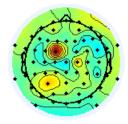


Window5 (0.45s to 0.5s)

Window6 (0.5s to 0.55s)



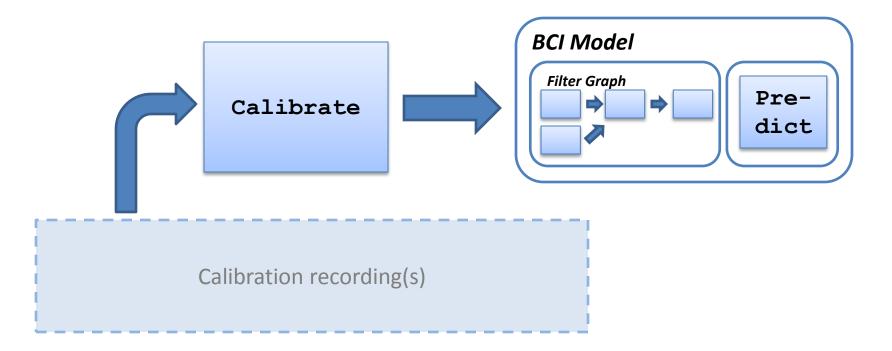
Window7 (0.55s to 0.6s)



Note: This method (and its close relative using "shrinkage LDA" in particular) yield state-of-the-art Performance on ERPs.

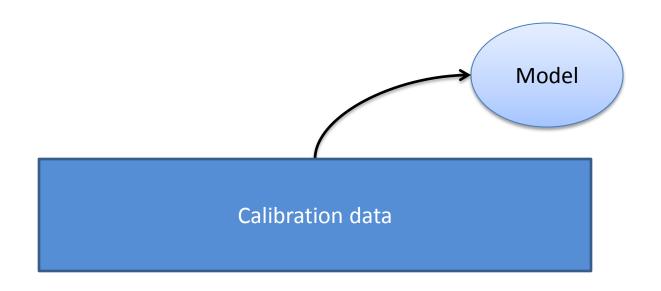
Overall BCI Structure

• **BCI paradigms** are BCILAB's way to *encapsulate all parts of a BCI approach into one unit* (e.g., signal processing, feature extraction, machine learning, ...)



Component 5: BCI Performance Evaluation

- When given calibration data and test data...
- Estimate model parameters (spatial filters, statistics)



- When given calibration data and test data...
- Estimate model parameters (spatial filters, statistics)
- Apply the model to new data (online / single-trial)
- Measure prediction performance or loss (e.g., misclassification rate or mean-square error)



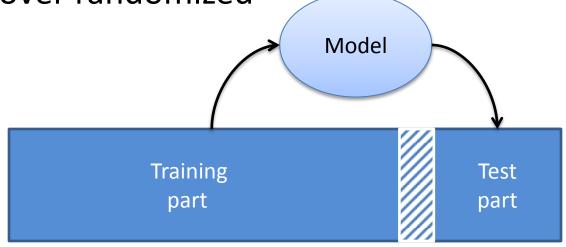
- Some implemented loss measures (between known "ground-truth" target labels *t* and predicted labels *p*) include mean-square error, mis-classification rate, area under ROC curve, and ca. a dozen others
- Mean-Square Error:

$$-L_{MSE}(\boldsymbol{p},\boldsymbol{t}) = \frac{1}{N}\sum_{k}(\boldsymbol{p}_{k}-\boldsymbol{t}_{k})^{2}$$

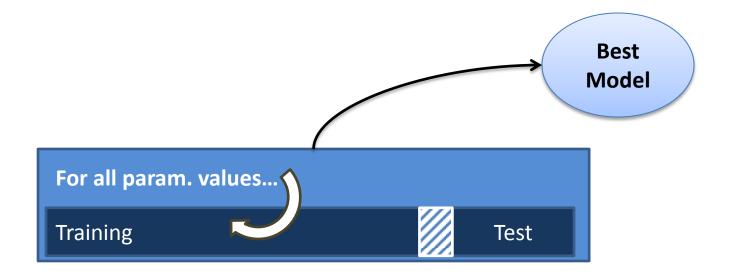
• Mis-Classification Rate:

$$-L_{MCR}(\boldsymbol{p},\boldsymbol{t}) = \frac{1}{N} \sum_{k} \begin{cases} 1, \boldsymbol{p}_{k} \neq \boldsymbol{t}_{k} \\ 0, \boldsymbol{p}_{k} = \boldsymbol{t}_{k} \end{cases}$$

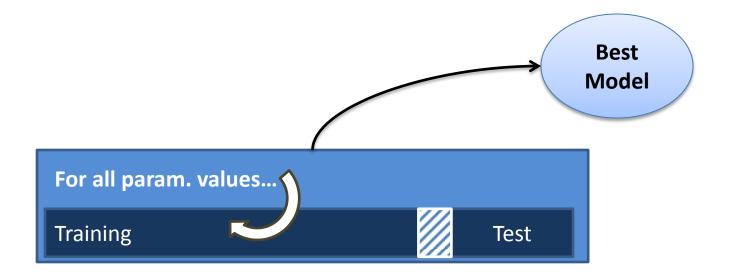
- What if there is no second data set?
- split one data set repeatedly into training/test blocks systematically, a.k.a. cross-validation
- Each trial is used for testing once
- Time series data: Prefer block-wise cross-validation over randomized



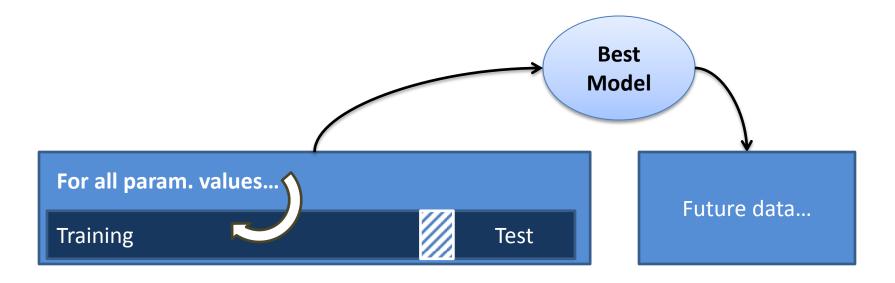
- **Parameter search** can be done using cross-validation in a grid search (try all values of free parameters)
- Quite general (e.g. can search for best method)



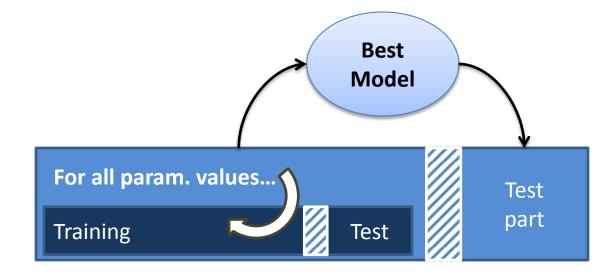
- **Parameter search** can be done using cross-validation in a grid search (try all values of free parameters)
- Quite general (e.g. can search for best method)
- However: Cannot directly report "best performance" estimates (=cherry-picked)



- **Parameter search** can be done using cross-validation in a grid search (try all values of free parameters)
- Quite general (e.g. can search for best method)
- However: Cannot directly report "best performance" estimates (=cherry-picked), except on future data



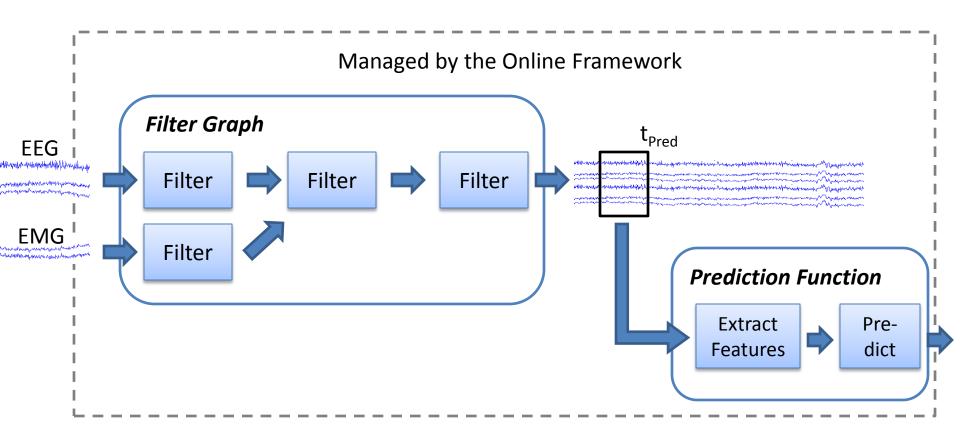
- **Parameter search** can be done using cross-validation in a grid search (try all values of free parameters)
- Alternatively: Parameter search can be nested within an outer cross-validation ("nested cross-validation")



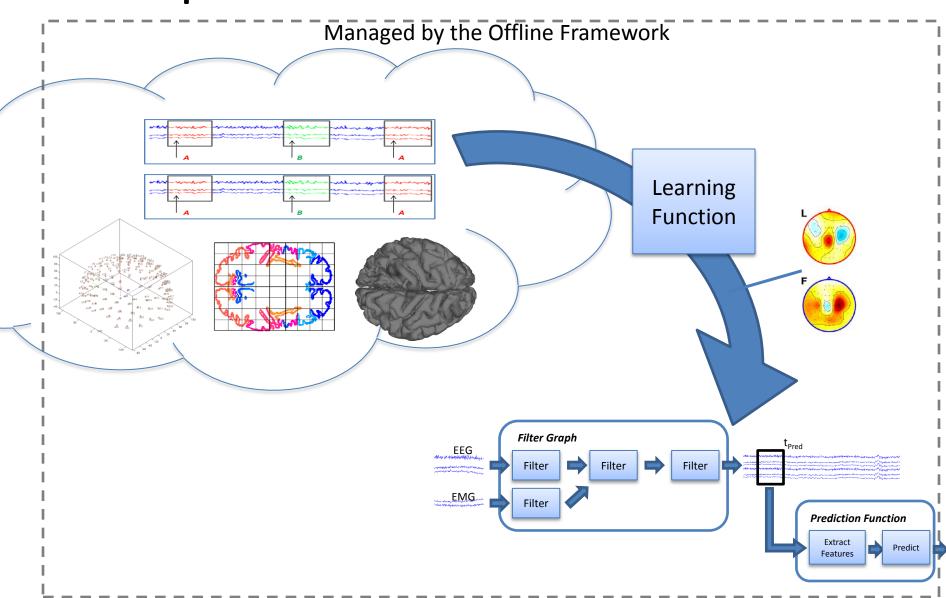
- The same strategies can be applied across a collection of data sets (e.g., multiple sessions or multiple subjects), for example "hold-one-subjectout"
- Cross-validation, grid search, nested cross-validation can be farmed out to a cluster in BCILAB, also to compiled workers (= no MATLAB license bottleneck)

Summary

Scope of the Online Framework

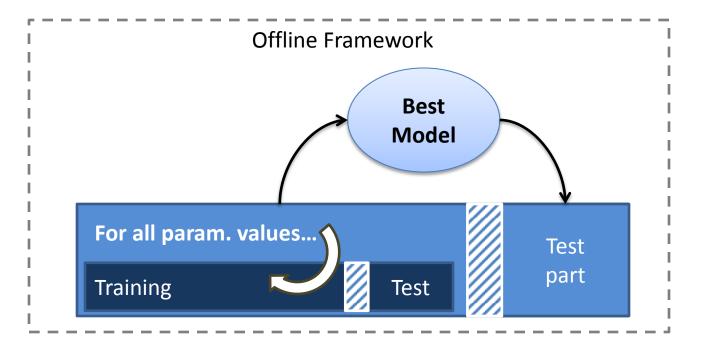


Scope of the Offline Framework

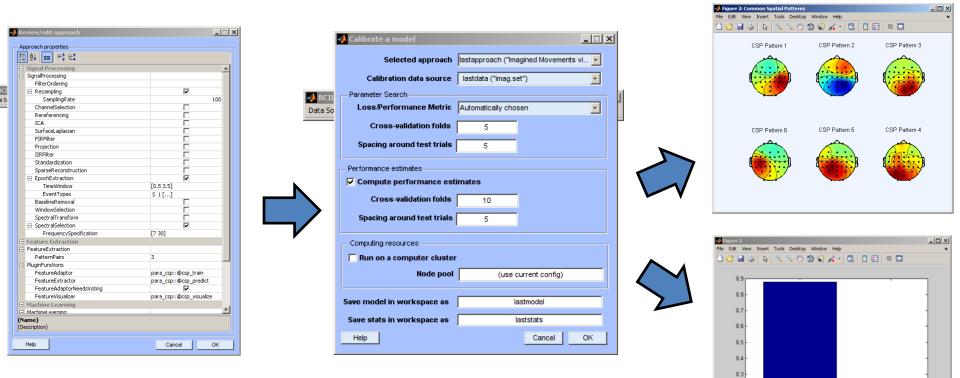


Scope of the Offline Framework

• Also Covered: Cross-validation, Grid Search, Nested Cross-Validation



5 GUI and Scripting Tour



0.2

Getting Data In: The Lab Streaming Layer

M Inbox - christiankothe@gmail. ×/ 👩 labstreaminglayer - Distribute ×	
← → C ③ code.google.com/p/labstreaminglayer/	
Bit ibuted signal transport, time synchronization and collection system for research use	
Project Home Downloads Wiki Issues Source Administer	
Summary People	

Tip: Discuss and then document each teammate's project duties

Recommend this on Google
 Starred by 0 users

Project Information

Project feeds

Code license MIT License

Labels Academic, Interface, Lab, Library, Middleware, Networking, Stream, Research

Members <u>christiankothe</u> 3 committers

> Your role Owner

The lab streaming layer (LSL) is a system for the unified collection of measurement time series in research experiments and handles both the networking, time-synchronization, (near-) real-time access as well as optionally the centralized collection, viewing and disk recording of the data.

The LSL distribution consists of

Summary

- The core transport library (libls) and its language wrappers (MATLAB, Python, C, C++). The library is general-purpose and cross-platform (Win/Linux/MacOS, 32/64) and forms the heart of the project.
- A suite of tools built on top of the library, including the recording program, a viewer program, importers, and a set of data collection apps that
 make data from a particular device available on the lab network (for example audio, EEG, or motion capture). The existing tools suite is
 tailored to the needs of only a small number of labs and should not be considered as general (or production-quality) as the library itself.

Streaming Layer API

The libIsI library provides the following abstractions for use by client programs:

- Stream Outlets: for making time series data streams available on the lab network. The data is pushed sample-by-sample or chunk-by-chunk into the outlet, and can consist of single- or multichannel data, regular or irregular sampling rate, with uniform value types (integers, floats, doubles, strings). Streams can have arbitrary XML meta-data (akin to a file header). By creating an outlet the stream is made visible to a collection of computers (defined by the network settings/Jayout) where one can subscribe to it by creating an inlet.
- Resolve functions: these allow to resolve streams that are present on the lab network according to content-based queries (for example, by
 name, content-type, or queries on the meta-data). The service discovery features do not depend on external services such as zeroconf and
 are meant to drastically simplify the data collection network setup.
- Stream Inlets: for receiving time series data from a connected outlet. Allows to retrieve samples from the provider (in-order, with reliable transmission, optional type conversion and optional failure recovery). Besides the samples, the meta-data can be obtained (as XML blob or alternatively through a small built-in DOM interface).
- . Built-in clock: Allows to time-stamp the transmitted samples so that they can be mutually synchronized. See Time Synchronization.

Time Synchronization

code.google.com/p/labstreaminglayer

Key Features

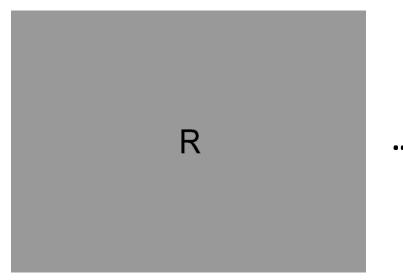
- System for the unified access to measurement time series from devices and applications (incl. events)
- Supports centralized collection, viewing and disk recording of the data (unified file format: XDF)
- Handles time-synchronization between multiple streams (to sub-ms precision, up to device uncertainty), networking, fault tolerance
- Library & Examples for C/C++/Python/MATLAB, Win/Linux/MacOS, 32/64bit
- Plugins for EEGLAB, BCILAB, MoBILAB

Currently Supported Hardware

- EEG: Biosemi, Cogionics, MINDO, BrainProducts, g.USBamp, Emotiv, Micromed, MindMedia, OpenEEG, TMSi, ANT Neuro ASALAB
- Eye Tracking: SR Research EyeLink, custom 2-camera setup
- Motion Capture: PhaseSpace, OptiTrack, Kinect, AMTI Force Plates
- Human-Interface Devices: Mice, Keyboards, Trackballs, Game Controllers, Wiimote and Expansions
- Multimedia Devices: PC-compatible sound cards, DirectShow-compatible video hardware
- Untested: ABM B-Alert, Enobio, Neuroscan Synamp, EGI AmpServer, Mitsar EEG, CTF/VSM, Tobii, SMI iViewX

Getting Data Out

- BCILAB provides several output protocols (e.g., TCP, OSC, LSL); also allows for custom extensions, e.g., for Presentation or ePrime
- Also supports SNAP natively (our Pythonbased stimulus-presentation environment)



6 Methods Tour

Time-Domain / ERP Baseline

Windowed Means

Window1 (0.25s to 0.3s) Window2 (0.3s to 0.35s) Window3 (0.35s to 0.4s)

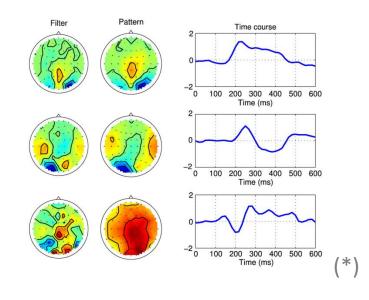
Window4 (0.4s to 0.45s) Window5 (0.45s to 0.5s)

Window6 (0.5s to 0.55s)

Window7 (0.55s to 0.6s)

- Traditional linear classifier for event-locked brain responses, usually using LDA
- Time windows manually assigned
- Examples: error recognition, surprise

DAL-ERP

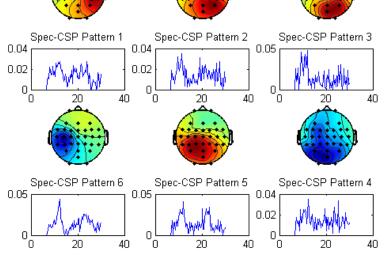


- State-of-the-art approach, no hand-tuned parameters
- Uses rank-regularized logistic or linear regression

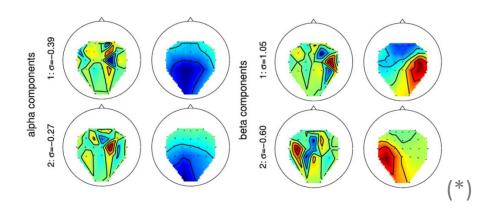
(*image: Tomioka et al., 2010)

Oscillatory Processes Baseline

Common Spatial Patterns Family



DAL-OSC



- Filter-Bank CSP (FBCSP): multiple bands/windows
- Diagonal Loading CSP (DLCSP): cov. shrinkage
- Composite CSP (CCSP): covariance prior
- Tikhonov-regularized CSP (TRCSP): filter shrinkage
- Spectrally weighted CSP (Spec-CSP): learning spectral filters from the data

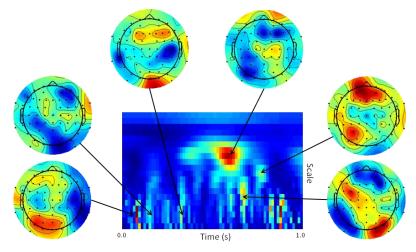
- State-of-the-art approach, no hand-tuned parameters
- Also uses rank-regularized logistic or linear regression
- Single-step approach, jointly optimal

New Methods

- Applicable to slowly-changing operator state and background activity as well as eventrelated transients
- RSSD is a pioneering method for learning full source-level time/frequency structure
- Examples: cognitive load, attention shifts
- Presented at ICON'11; methods and data papers in preparation

Methods for Time-Domain Analysis

(below: Wave Propagation Imaging)

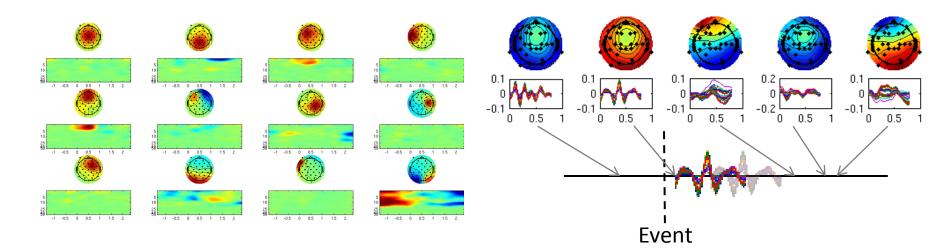


- Classify event-locked brain responses
- Best methods to date learn optimal evolving spatial filters (as above)
- Several methods in the same performance ballpark
- Examples: error recognition, surprise
- Benchmark paper in preparation

New Methods (Exploratory)

Spatio-Spectral Bayes

Pattern Alignment Learning

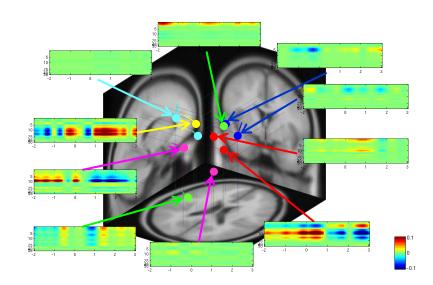


- A fully Bayesian version of RSSD aimed at neuroscientific modeling
- Allows for extensive statistical analysis of results
- Presented at Sloan-Swartz '11

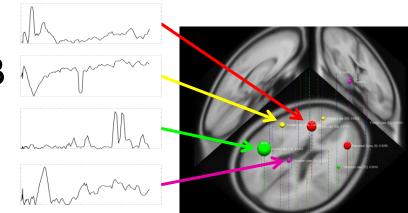
- Finds time-jittered brain processes associated with known events in the work environment
- Radically new approach using joint optimization
- Applications: target event detection and other event-related cognitive responses

7 Future Directions

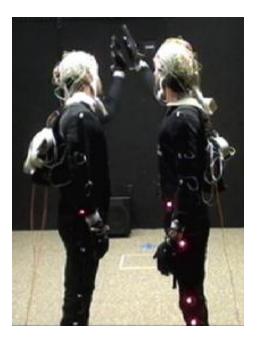
- Making principled use of anatomical prior knowledge; requires that learned parameters are endowed with anatomically meaningful locations
- First step in this direction: RSSD, using Independent Component Analysis and Dipole Fitting to obtain localized parameters
- Use Beamforming, NFT, ...



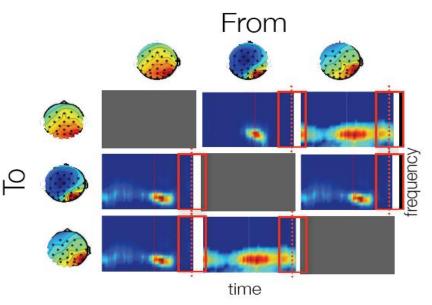
- Learning models from data spanning multiple persons (using multi-task learning, empirical Bayesian methods, mixed-effects models, etc.)
- Currently only one such implementation in BCILAB (multi-subject-OSR)



- Integrating motion capture information and other peripheral and behavioral measures into BCIs (e.g., eye tracking, facial expression, ...)
- Can explain away artifacts and interfering factors, contains rich information about cognitive state by themselves
- Requires deep integration with the MoBILAB toolbox



- Leveraging Granger-causal effective connectivity measures as features for BCIs (using the SIFT toolbox)
- Connectivity contains far richer structure than univariate (per-source) measures



A Further Reading

These and Futher Slides:

ftp://sccn.ucsd.edu/pub/bcilab/

BCI Papers Worth Reading

- B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial analysis and classification of ERP components A tutorial", NeuroImage, vol. 56, no. 2, pp. 814–825, May 2011.
- F. Lotte and C. Guan, "Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms," IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011.
- R. Tomioka and K.-R. Mueller, A regularized discriminative framework for EEG analysis with application to brain-computer interface", NeuroImage, vol. 49, no. 1, pp. 415–432, 2010.
- B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The non-invasive Berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects", NeuroImage, vol. 37, no. 2, pp. 539–550, Aug. 2007.
- M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming in noninvasive brain-computer interfaces", IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1209–1219, Apr. 2009.

BCI Surveys

- A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals", J. Neural Eng., vol. 4, no. 2, pp. R32–R57, Jun. 2007.
- F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, "A review of classification algorithms for EEGbased brain-computer interfaces", J. Neural Eng., vol. 4, no. 2, pp. R1–R13, Jun. 2007.
- S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang, K. Kreutz-Delgado, "Evolving Signal Processing for Brain– Computer Interfaces", Proc. IEEE, vol. 100, pp. 1567-1584, 2012.

Interesting Technical Papers

- D.P. Wipf and S. Nagarajan, "A Unified Bayesian Framework for MEG/EEG Source Imaging," NeuroImage, vol. 44, no. 3, February 2009.
- S. Haufe, R. Tomioka, and G. Nolte, "Modeling sparse connectivity between underlying brain sources for EEG/MEG," Biomedical Engineering, no. c, pp. 1-10, 2010.
- S. Boyd, N. Parikh, E. Chu, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," Information Systems Journal, vol. 3, no. 1, pp. 1-122, 2010.
- P. Zhao and B. Yu, "On Model Selection Consistency of Lasso," Journal of Machine Learning Research, vol. 7 pp. 2541-2563, 2006.

Technical Papers, ct'd

- J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, "Multimodal Deep Learning," in Proceedings of the 28th International Conference on Machine Learning, 2011.
- K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, "Identifying natural images from human brain activity," Nature, vol. 452, no. 7185, pp. 352-355, Mar. 2008.
- O. Jensen et al., "Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience," Frontiers in Psychology, vol. 2, p. 100, 2011.
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Cung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y Huang, T. Coleman, J. A. Rogers, "Epidermal electronics," Science vol. 333, no. 6044, 838-843, 2011.

Researchers to Watch

- Klaus-Robert Mueller et al. (TU Berlin) one of the leading BCI groups http://www.bbci.de/publications.html
- Marcel van Gerven et al. (Donders) BCI and Neuroscience with a Bayesian approach <u>https://sites.google.com/a/distrep.org/distrep/publications</u>
- Ryota Tomioka (U Tokyo) known for some technical achievements <u>http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka</u>
- Karl Friston et al. (UC London) working on relevant underpinnings for neuroimaging (outside BCI) <u>http://www.fil.ion.ucl.ac.uk/Research/publications.html</u>
- Leading Statisticians and Machine Learners: Michael I. Jordan, Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh, David Blei, ...

Thanks!

Questions?