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1 High-Level Overview



BCl: Our Working Definition

« “Asystem which takes a biosignal measured from a
person and predicts (in real time / on a single-trial
basis) some abstract aspect of the person's

cognitive state.”
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Biosighals and other Inputs

* Brain Signals: EEG, fNIRS, MEG, fMRI, ECogG, ...

* Peripheral Measures: ECG, EMG, EOG, GSR,
Respiration, Gaze/Pupillometry, Motion Capture

* Context Information: Program/System State, Vehicle

Speed, ...
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BCl Estimates/Predictions

Any aspect of the physical brain state that can be
recovered from observable signals (discrete,
continuous, multivariate, ...)

Tonic state: degree of “relaxation”, cognitive load,...
Phasic state: attention deployment, imagined vowel

Event-related state: surprised/not surprised,
committed error, event noticed/not noticed, ...

State Predictions

)

BCI
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SCCN Software Tools for BCI

EEGLAB, MoBILAB, SIFT, ...
(not discussed here today)

Lab Streaming Layer (LSL) Simulation and
code.google.com/p/labstreaminglayer Neuroscience Application
Platform (SNAP)
BCILAB ftp://sccn.ucsd.edu/pub/SNAP

ftp://sccn.ucsd.edu/pub/bcilab
sccn.ucsd.edu/wiki/BCILAB

BCI _
(inference/
estimation)




2 Application Areas and
Examples



Communication and Control
for the Severely Disabled

e Severe Disabilities: Tetraplegia, Locked-in
syndrome

* Speller Programs, Wheelchairs, Robots, ...

¢
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P300 Speller KU Leuven Brain2Robot
(Fraunhofer FIRST)



Other Health Uses

* Sleep Stage Recognition, Neurorehabilitation

iBrain



Operator Monitoring

* Braking Intent, Lane-Change Intent,
Workload, Fatigue, Alertness, Attention, ...

BrainGage

IN geny T
R

Haufe et al., 2011 The MITRE Corp., 2011



Entertainment, Social, etc.

e Control by Thought, Mood
Assessment/Display

neuro
communication
machine.

necomimi “neurowear”



Neuroscience

* Multivariate Pattern Analysis / Brain Imaging

Kothe et al., 2011






Software Environment For:

* Brain-Computer Interface Design (Cognitive
Monitoring)

* Methods Research:

— Design & rapid prototyping of new methods &
methods from literature

— Offline testing, performance evaluation & batch
comparison, visualizations

— Simulated online testing
* Rapid Prototyping:
— Real-time use and testing of BCls

— Prototype deployment l! ONR

Office of Naval Research




Basic Goals

* Usable by beginners and experts to serve
both the EEGLAB community and advanced
needs

* Include a large array of methods, both
conventional and state-of-the art, to rapidly
set up well-performing BCls and conduct
broad comparison studies

* Provide convenient plugin frameworks and
reusable backend tools to allow for rapidly
prototyping of methods



Facts & Figures

Developed since 2010 at SCCN, UCSD (primarily by me)

Precursor was the PhyPA toolbox (Kothe & Zander,
2006-'09)

Built on top of EEGLAB (Delorme & Makeig, 2004)

The largest open-source BCl toolbox by methods and
algorithms (100+) as of 2011

Offline and online processing both in MATLAB, same
code base, Win/Linux/MacOS, 32/64bit

Extensive documentation (hundreds of pages of help
text, manual, wiki, 400+ lecture slides online)
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BCILAB Sample GUI
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http://sccn.ucsd.edu/wiki/BCILAB

ftp://sccn.ucsd.edu/pub/bcilab



http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
http://sccn.ucsd.edu/wiki/BCILAB
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BCILAB Sample Script

Benchmarking 5 state-of-the-art methods on a
136-subject data set (on a cluster):

epoch = [-0.2 0.8]:
wnds = [0.25 0.3;0.3 0.35;0.35 0.4; 0.4 0.45;0.45 0.5;0.5 0.55;0.55 0.6]+

apps.wWmeans lda = {'Windowmeans' 'SignalFrocessing’,{'IIRFilter',{[0.1 0.5], 'highpa=s"'
'EpochExtraction', epoch, 'SpectralSelection', [0.1 15]}, "Prediction', {'FeatureExtraction', {'wnd=s" ,wnd=}}};

apps.wmeans vblogreg = {'Windowmeans' 'SignalProcessing', {"IIRFilter’',{[0.1 0.5], 'highpass’
'Epcchixt:act;c:' epoch, "SpectralSelection', [0.1 15]}, "Prediction', {'FeatureExtraction', {"wnds",wnd=},
'MachineLearning', { 'Learner', {"logreg’', [], "variant', '"vb-iter'"}}}};

apps.dalfine = {'DALERP', "'SignalProcessing', { '"EpochExtraction’',epoch},

'Prediction', {"MachinelLearning', { 'Learner', {'dal', '"lanbdas", 2.~ (10:-0.125:1}), "solver', 'cg' H

apps.raw _glc = {'DataflowSimplified' 'SignalProcessing’',{'IIRFilter',{[0.1 0.5], ' 'highpass’
'EpochExtraction', epoch, 'SpectrallSelection', [0.1 15]},
'Prediction', { "Machinelearning', {'learner', {'dal', 2.~ (12:-0.125:1})," :eg;;a:;ze:','g;c', 'shape'", [256 HaN] }}}}:

apps.wavelet glc = {'DataflowSimplified' 'SignalProcessing',{'IIEFilter’',{[0.1 0.5], 'highpass'},

'EpochExtraction',epoch, 'Spectralielection', [0.1 15], "wavelet','on'}

r
'Prediction', { "MachineLearning', { 'learner', {'dal',2."(12:-0.125:1), "regularizer', 'glc', 'shape',[256 HaN]}}}}:

results = bci batchtrain('Data', '/data:/grainne/ERN/*.vhdr', 'Rpproaches', apps,

'TargetMarkers", {{"5101"',"102"},{'5201","202
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3 A Close Look at Components
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Component 1: Predictive
Mapping



Central Predictive Mapping

e A BCI (with limited memory of the past) can
be viewed as a mathematical function f:

vy =f(X); X= y= “subj. excited” (+1)
o s s “subj. not excited” (-1)
 The functional form is arbitrary, for example
y = sign(var(WX) + b)

* The mapping involves free parameters, here
W and b, and data from a sliding window X



Choice of a Functional Form

* Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parametervy)



Choice of a Functional Form

* Reflects the relationship between observation (data
segment X) and desired output (cognitive state
parametery)

 Based on some assumed generative mechanism
(forward model) — or ad hoc

e Remember: Functional form is the inverse mapping!



Key Ingredient: Spatial Filter

* Linear inverse of volume conduction effect
between sources S and channels X
X = AS (forward)
S = WX (inverse)

W



Component 2: Signal Processing



Role of Signal Processing

* BCILAB allows to implemented BCls using a
network of digital signal processing blocks

EEG
Ay v

N«\,WA/WW WW"‘W‘W
N A T e

EMG

WMMW
AN AN A b A0 9T

(“filters”)

/FilterGraph \
Control Signal
- Filter » Filter Filter »W
”(Filter ’
_/

* Relevant filter classes: Spatial Filters, Temporal
Filters, Spectral Filters, Spatio-Temporal Filters,

Domain Transforms (e.g. DFT)



Role of Signal Processing

* Concrete Toy Example: Feed the amplitude of a brain
idle oscillation (e.g. 10 Hz alpha associated with
relaxation) from one EEG channel back to the
user/subject

FIR Band-pass
(8-13 Hz)

yi) = ) bexi (1= 0)
k=0

Running Variance

A

!

=

yi(n) = x; (n)?

Squaring

=

Moving
Average

\
=

1 m
yi(n) = mz x; (n—k)
k=0

Square
Root or
Logarithm

yi(n) = logx; (n)



Filter Components In Practice

* Filters can operate on continuous signals...

PYPIN Continuous-Data
Ay Filters

il A A A oaa M
‘-‘rip\j\\‘_r A/ ~__'¢‘\."|\,,,'.FL~; A
\/ U\-‘ﬂ‘_-J- e ea
YR Y W W R VY]

e ...oronsegmented (“epoched”) signals:

Epoched-Data i, [ W

Eilzes »
EEG = flt selchans(EEG,{‘'C3’,’C4’,’Cz’})
[EEG,State] = flt resample (EEG,200,State)




Combined Online Processing

* Both frameworks are complementary, rather
than contradictory, and are in practice often
used in combination, e.g. to minimize
computational costs

/Filter Graph \ t
Pred
» Filter » Filter » Filter S FODT s S e s
- Filter ’ ~ ™~
/ Prediction Function
y = f(X)

N\




Combined Online Processing

* Both frameworks are complementary, rather
than contradictory, and are in practice often
used in combination, e.g. to minimize
computational costs

/ \ Also multiple signal
Filter Graph t windows allowed

FEG Pred
i pinbetihdyy . : : S VS~ i A
g » Filter » Filter » Filter »’”mﬁ: A ﬂﬂmywmw

11111 e I e

EMG =

A Filter I N %@www w_ww»w%
Prediction Function

y = (X4, X5)




Component 3: Machine Learning



The Problem of
Unknown Parameters
* Processing depends on unknown parameters

(person-specific, task-specific, otherwise
variable) — e.g., per-sensor weights as below:

1
08
0.6

05 0.4
102

o 3 0 3
r— {02

0.5 o AU EY

7 x.\\ ~0.6

-1 el / B-os
y _1

-15

Blankertz et al. 2007



Reasons for
Parameter Uncertainty

* Folding of cortex differs between any two
persons

* Relevant functional map
differs across individuals

* Sensor locations differ
across recording sessions

* Brain dynamics are non-
stationary at all time
scales




Solution: Calibration

* Calibration / training data can be used to estimate
parameters, during a separate calibration step

Calibration data

e

Calibration step

'
BCI |




Calibration Data

* Many possible kinds of data could be used

* Best known type of calibration data:
example data, i.e. examples of EEG of a
person being excited, not excited, etc.

* Collected in a special calibration recording
(before actual online use of the BCl)

\ “target markers” in BCILAB
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Big-Picture Information Flow

Learning
Function

Filter Graph
Filter » Filter » Filter
ive b o]

tPred

e il

Prediction Function

y = f(X)




Machine Learning Framework

* Large field with 100s of algorithms (LDA, SVM, GMM,
ANNSs, logistic regression, ...)

e Most methods conform to a common framework of a
training function and a prediction function

N\

/ Machine Learning Method (Supervised) \
Pre-
Data » Training New Data » Prediction .
Label » function »MOdel Model » function » dicted
abels Labels

M = ml trainsvm(X,y, <extra parameters>)
y_pred = ml predictsvm(X new,6M)

L




Machine Learning In Practice

e Often, one trial segment (sample) is extracted for

every target marker in the calibration recording and
is used as training exemplar X,

* Its associated label y, can be deduced from the
target marker

B i P e T NP R B S e T
Mwm»Wwwvwﬂ — e

T e T e e A
/I\ S2 /[\ S1 T R1 T S1
e, N I
“\"‘P‘A'L"\”":“""‘ﬂ‘*'w’ﬂ""“a\d l\r‘ww'mwwi"m\WM““\"" M"‘f“"\uw““v"v“'\“*‘,m'\‘\\lw'\
’

A et L
O [P Wi, M‘.‘m;\ v\‘ e
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Machine Learning In Practice

e Often, one trial segment (sample) is extracted for

every target marker in the calibration recording and
is used as training exemplar X,

* Its associated label y, can be deduced from the
target marker

E T T

B i P e T NP R B S e T
Mwm»Wwwvwﬂ — e

TSZ TSI TR1 T51

it Hinal b, -

, i - .

h T P e Training
>w\W'I,W‘dl"h"‘“n‘“'n“m’ﬂw%\r.j \\i‘Mﬁ‘MMM"MWM“'\"" W\‘ﬁfﬁ'l"'W““q\’v\\“kvlh l\ ‘Mlm (X X ] O
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Component 4: Feature Extraction



Feature Extraction

e Caveat: Off-the-shelf machine learning methods
often do not work very well when applied to raw
signal segments of the calibration recording

— too high-dimensional (too many parameters to fit)

— too complex structure to be captured (too much
modeling freedom, requires domain-specific
assumptions)

1000s of degrees of freedom!

—

i runid o,
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Feature Extraction

* Typical Solution: Introduce additional mapping
(called “feature extraction”) from raw signal
segments onto feature vectors which extracts the key
features of a raw observation

— output is usually of lower dimensionality

— hopefully statistically “better” distributed (easier to
handle for machine learning)



Concrete Example Task

Flanker Task: The experiment consists of a sequence of
ca. 330 trials with inter-trial interval of 2s +/- 1.5s

At the beginning of each trial, an arrow is presented
centrally (pointing either left or right)

The arrow is flanked by congruent or incongruent
“flanker” arrows (preceding the center by a few ms):

CED€€

The subject is asked to press the left or right button,
according to the central arrow direction, and makes
frequent errors (ca. 25%)



Approach

e Calibration recording is band-pass filtered
between 0.5Hz and 15Hz

— 0.5Hz lower edge removes drifts

— 15Hz upper edge leaves enough room for sharp
ERP features

* Epochs are extracted for each trial and label is
set to A for incorrect trials and B for corrects




Actual Data

* Time courses for all trials super-imposed
(color-coded by class) — but here different task

-2 -15 -1 -05 0 05
time (C3)




Extracted Epochs

Cortex

|
|
1 | - | \\‘\ | \ \| | |

N —
\ . \ Channel time courses

N under Condition A

Response (AorB)  Three sample trials (out of 100)
shown: mean, -1 std. dev, +1 std. dev




f, f, fs

Cortex

For each trial segment, calculate signal mean in
3 time sub-windows (= 3-dim feature vector)




Resulting Feature Space

* Plotting the 3-element feature vectors for all
error trials in red, and non-error trials in
green, we obtain two distributions in a 3d

space:

Note that across all channels this space has in fact 3 x #channels dimensions!



ML with Feature Extraction

* Including the feature extraction, the analysis process
is as follows:

R o
TR i pLEE oy A e e e e e e e
e A e

e e e e o e e e o e e R e R e Ay

T S2 T 51 T R1 T S1
‘ Fhietinad g, A'»L\W\wmwm ’Mﬂﬁw”r‘r,m“ﬂw Extract
e, St T ‘.’«fm‘“W*»«,.tm\-‘wI”;i\ ‘,*'m see Fe a t ures

L
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1 1

2
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Machine Learning Continued

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

101

e.g., LDA » P
x Y okl




Machine Learning Continued

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

* ... which determines a parametric predictive mapping

e.g., LDA

101




Simple 2-class LDA In a Nutshell

* Given feature vectors x;, (in vector form) in C; and C,,

Hi = - z Xi ) 2 = 2 (xp — 1) (xg — )’

|Ci £
€C; KEC;
0= (Z1+2)7 (2 — ), b=0"(u; +mu;)/2

101
9\/ Y
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0 | %iﬁggﬁ%ﬁ/

////
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(&P Resulting Predictive Mapping and
Model

* LDA produces parameters of a linear mapping
y=0x—0>b

* For classification, the mapping is actually non-
linear:

y = sign(0x — b)

* The learned model with its person-specific

parameters here consists of (8, b); generally it
could include adapted signal-processing
parameters, feature-extraction parameters, etc.



Spatial Filters Visualized

« Topographically mapped, the following filters
emerge: Windaw? (0.25s to 0.3s) Window2 (0.3s to 0.355) Window3 (0.35s to 0.4s)

Windowd (0.455 to 0.55) Windowi (0.55 to 0.555)

Note: This method (and its close relative using
“shrinkage LDA” in particular) yield state-of-the-art
Performance on ERPs.




Overall BCI Structure

* BCI paradigms are BCILAB’s way to encapsulate all
parts of a BCl approach into one unit (e.g., signal
processing, feature extraction, machine learning, ...)

(BCI Model \

Filter Graph
Calibrate ‘ > |9 SESE
p dict
O 7

Calibration recording(s)



Component 5: BCI Performance
Evaluation



Overall Evaluation Strategies

 When given calibration data and test data...
e Estimate model parameters (spatial filters, statistics)

Calibration data




Overall Evaluation Strategies

When given calibration data and test data...
Estimate model parameters (spatial filters, statistics)
Apply the model to new data (online / single-trial)
Measure prediction performance or loss (e.g., mis-
classification rate or mean-square error)

Compute Loss

/

Calibration data Future data...




Overall Evaluation Strategies

 Some implemented loss measures (between
known “ground-truth” target labels t and
predicted labels p) include mean-square error,
mis-classification rate, area under ROC curve,
and ca. a dozen others

* Mean-Square Error:

1
— Lysg(p,t) = ﬁZk(pk — t)°
 Mis-Classification Rate:

1 1,p, £t
—Lycr(D,t) = Nzk{o ;::: t,I:



Overall Evaluation Strategies

e What if there is no second data set?

 split one data set repeatedly into training/test blocks
systematically, a.k.a. cross-validation

e Each trial is used for testing once
e Time series data: Prefer block-wise cross-validation

over randomized @

Training

part




Overall Evaluation Strategies

* Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

* Quite general (e.g. can search for best method)

Best
Model

For all param. values... ’
Training




Overall Evaluation Strategies

Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

Quite general (e.g. can search for best method)
However: Cannot directly report “best performance”

estimates (=cherry-picked)
Best
Model

For all param. values... ’
Training




Overall Evaluation Strategies

Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

Quite general (e.g. can search for best method)

4

However: Cannot directly report “best performance’
estimates (=cherry-picked), except on future data

Best
Model

For all param. values...
: Future data...
Training
v




Overall Evaluation Strategies

* Parameter search can be done using cross-validation
in a grid search (try all values of free parameters)

* Alternatively: Parameter search can be nested within
an outer cross-validation (“nested cross-validation”)

Best
Model

For all param. values... ’
Training Test




Overall Evaluation Strategies

 The same strategies can be applied across a
collection of data sets (e.g., multiple sessions or

multiple subjects), for example “hold-one-subject-
out”

* Cross-validation, grid search, nested cross-validation
can be farmed out to a cluster in BCILAB, also to
compiled workers (= no MATLAB license bottleneck)
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Scope of the Offline Framework

Learning
Function

Filter Graph
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Prediction Function
Extact * Predict
Features




Scope of the Offline Framework

* Also Covered: Cross-validation, Grid Search, Nested
Cross-Validation

For all param. values... ’
Training 7




5 GUI and Scripting Tour
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=] Signal Processing
[=] SignalProcessing
FilterOrdering
Resampling
SamplingRate
ChannelSelection
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e Getti Ng Data In:
The Lab Streaming Layer

J

&« C @ code.google.com/p/abstreaminglayer/

@ labstreaminglayer

Distributed signal transport, time synchronization and collection system for research use

Project Home | Downloads  Wiki  |ssues  Source  Administer

Summary People

Tip: Discuss and then document each teammate’s project duties

Project Information Summal’y
J +1| Recommend this on Google . . . . . .
The lab streaming layer (LSL) is a system for the unified collection of measurement time series in research experiments and handles both the
Starred by 0 users networking, time-synchronization, (near-) real-time access as well as optionally the centralized collection, viewing and disk recording of the data.

Eroject feeds The LSL distribution consists of:

Code license

MIT License « The core transport library {liblsl) and its language wrappers (MATLAB, Python, C, C++). The library is general-purpose and cross-platform
— (Win/Linux/MacQS. 32/64) and forms the heart of the project.

Labels » A suite of tools built on top of the library, including the recording program, a viewer program, importers, and a set of data collection apps that
Academic, Interface, Lab, make data from a particular device available on the lab network (for example audio, EEG, or motion capture). The existing tools suite is
Library, Middleware, tailored to the needs of only a small number of labs and should not be considered as general (or production-quality) as the library itself.

Networking, Stream,

Research Streaming Layer API
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christiankaothe
3 committers » Stream Outlets: for making time series data streams available on the lab network. The data is pushed sample-by-sample or chunk-by-chunk
into the outlet, and can consist of single- or multichannel data, regular or irregular sampling rate, with uniform value types (integers, floats,
doubles, strings). Streams can have arbitrary XML meta-data (akin to a file header). By creating an outlet the stream is made visible to a
collection of computers (defined by the network settings/layout) where one can subscribe to it by creating an inlet.

The liblsl library provides the following abstractions for use by client programs:

Your role
Owner

Resolve functions: these allow to resolve streams that are present on the lab network according to content-based queries (for example, by
name, content-type, or queries on the meta-data). The senice discovery features do not depend on external services such as zeroconf and
are meant to drastically simplify the data collection network setup.

Stream Inlets: for receiving time series data from a connected outlet. Allows to retrieve samples from the provider (in-order, with reliable
transmission, optional type conversion and optional failure recovery). Besides the samples, the meta-data can be obtained (as XML blob or
alternatively through a small built-in DOM interface).

» Built-in clock: Allows to time-stamp the transmitted samples so that they can be mutually synchronized. See Time Synchronization.

Time Synchronization

code.google.com/p/labstreaminglayer




Key Features

System for the unified access to measurement
time series from devices and applications (incl.
events)

Supports centralized collection, viewing and disk
recording of the data (unified file format: XDF)

Handles time-synchronization between multiple
streams (to sub-ms precision, up to device
uncertainty), networking, fault tolerance

Library & Examples for C/C++/Python/MATLAB,
Win/Linux/MacQOS, 32/64bit

Plugins for EEGLAB, BCILAB, MoBILAB



Currently Supported Hardware

 EEG: Biosemi, Cogionics, MINDO, BrainProducts,
g.USBamp, Emotiv, Micromed, MindMedia, OpenEEG,
TMSi, ANT Neuro ASALAB

* Eye Tracking: SR Research Eyelink, custom 2-camera
setup

* Motion Capture: PhaseSpace, OptiTrack, Kinect, AMTI
Force Plates

 Human-Interface Devices: Mice, Keyboards, Trackballs,
Game Controllers, Wiimote and Expansions

 Multimedia Devices: PC-compatible sound cards,
DirectShow-compatible video hardware

* Untested: ABM B-Alert, Enobio, Neuroscan Synamp,
EGI AmpServer, Mitsar EEG, CTF/VSM, Tobii, SMI
IViewX



Getting Data Out

* BCILAB provides several output protocols
(e.g., TCP, OSC, LSL); also allows for custom
extensions, e.g., for Presentation or ePrime

e Also supports SNAP natively (our Python-
based stimulus-presentation environment)
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* Traditional linear classifier for event-locked e State-of-the-art approach, no hand-tuned
brain responses, usually using LDA parameters
 Time windows manually assigned * Uses rank-regularized logistic or linear
 Examples: error recognition, surprise regression

(*image: Tomioka et al., 2010)
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Common Spatial Patterns Family
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*  Filter-Bank CSP (FBCSP): multiple
bands/windows

* Diagonal Loading CSP (DLCSP): cov. shrinkage
*  Composite CSP (CCSP): covariance prior

* Tikhonov-regularized CSP (TRCSP): filter
shrinkage

*  Spectrally weighted CSP (Spec-CSP): learning
spectral filters from the data

alpha components

1:0=-0.39

2:0=-0.27

Oscillatory Processes Baseline

DAL-OSC

1:0=1.05

beta components

=-0.60

2: o

State-of-the-art approach, no hand-tuned
parameters

Also uses rank-regularized logistic or linear
regression

Single-step approach, jointly optimal

(*image: Tomioka et al., 2010)
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Methods for Oscillatory Analysis
(below: Regularized Spatio-Spectral Dynamics)

Applicable to slowly-changing operator state
and background activity as well as event-
related transients

RSSD is a pioneering method for learning
full source-level time/frequency structure
Examples: cognitive load, attention shifts

Presented at ICON’11; methods and data
papers in preparation

Methods for Time-Domain Analysis
(below: Wave Propagation Imaging)

Classify event-locked brain responses

Best methods to date learn optimal evolving
spatial filters (as above)

Several methods in the same performance
ballpark

Examples: error recognition, surprise
Benchmark paper in preparation
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=2 New Methods (Exploratory)

Spatio-Spectral Bayes Pattern Alignment Learning

L

Event

e Afully Bayesian version of RSSD aimed at

A _ * Finds time-jittered brain processes associated
neuroscientific modeling

with known events in the work environment
« Allows for extensive statistical analysis of

* Radically new approach using joint optimization
results

 Applications: target event detection and other

*  Presented at Sloan-Swartz ‘11 event-related cognitive responses
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Current and Future Directions

 Making principled use of anatomical prior
knowledge; requires that learned parameters are
endowed with anatomically meaningful locations

* First step in this direction:
RSSD, using Independent
Component Analysis and
Dipole Fitting to obtain
localized parameters

 Use Beamforming, NFT, ...




Current and Future Directions

e Learning models from data spanning multiple
persons (using multi-task learning, empirical
Bayesian methods, mixed-effects models, etc.)

* Currently onlyonesuch .
implementation in BCILAB «
(multi-subject-OSR)




Current and Future Directions

* Integrating motion capture information and
other peripheral and behavioral measures into
BCls (e.g., eye tracking, facial expression, ...)

e Can explain away artifacts
and interfering factors, contains
rich information about cognitive
state by themselves

* Requires deep integration with
the MoBILAB toolbox




Current and Future Directions

* Leveraging Granger-causal effective
connectivity measures as features for BCls
(using the SIFT toolbox)

* Connectivity contains far
richer structure than
univariate (per-source)
measures

requency

f



A Further Reading



These and Futher Slides:

ftp://sccn.ucsd.edu/pub/bcilab/



ftp://sccn.ucsd.edu/pub/bcilab/lectures/
ftp://sccn.ucsd.edu/pub/bcilab/lectures/

BCl Papers Worth Reading

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Mueller, "Single-trial
analysis and classification of ERP components - A tutorial”, Neurolmage,
vol. 56, no. 2, pp. 814-825, May 2011.

F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCl designs: unified theory and new algorithms,” IEEE Transactions on
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, Feb. 2011.

R. Tomioka and K.-R. Mueller, A regularized discriminative framework for
EEG analysis with application to brain-computer interface", Neurolmage,
vol. 49, no. 1, pp. 415-432, 2010.

B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Mueller, and G. Curio, "The
non-invasive Berlin brain-computer interface: Fast acquisition of effective
performance in untrained subjects", Neurolmage, vol. 37, no. 2, pp. 539-

550, Aug. 2007.

M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming
in noninvasive brain-computer interfaces”, IEEE Trans. Biomed. Eng., vol.
56, no. 4, pp. 1209-1219, Apr. 2009.



BCl Surveys

e A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, "A
survey of signal processing algorithms in brain-computer

interfaces based on electrical brain signals", J. Neural Eng.,
vol. 4, no. 2, pp. R32—-R57, Jun. 2007.

* F Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B.
Arnaldi, "A review of classification algorithms for EEG-
based brain-computer interfaces", J. Neural Eng., vol. 4, no.
2, pp. R1-R13, Jun. 2007.

e S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang,
K. Kreutz-Delgado, "Evolving Signal Processing for Brain—
Computer Interfaces”, Proc. IEEE, vol. 100, pp. 1567-1584,
2012.



Interesting Technical Papers

D.P. Wipf and S. Nagarajan, “A Unified Bayesian Framework
for MEG/EEG Source Imaging,” Neurolmage, vol. 44, no. 3,
February 2009.

S. Haufe, R. Tomioka, and G. Nolte, “Modeling sparse
connectivity between underlying brain sources for
EEG/MEG,” Biomedical Engineering, no. c, pp. 1-10, 2010.

S. Boyd, N. Parikh, E. Chu, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Information Systems

Journal, vol. 3, no. 1, pp. 1-122, 2010.

P. Zhao and B. Yu, “On Model Selection Consistency of
Lasso,” Journal of Machine Learning Research, vol. 7 pp.
2541-2563, 2006.



Technical Papers, ct'd

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng, “Multimodal
Deep Learning,” in Proceedings of the 28th International
Conference on Machine Learning, 2011.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying
natural images from human brain activity,” Nature, vol. 452, no.
7185, pp. 352-355, Mar. 2008.

O. Jensen et al., “Using brain-computer interfaces and brain-state
dependent stimulation as tools in cognitive neuroscience,” Frontiers
in Psychology, vol. 2, p. 100, 2011.

D.-H. Kim, N. Lu, R. Ma,. Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M.
Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L.
Xu, M. Li, H.-J. Cung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.
G. Omenetto, Y Huang, T. Coleman, J. A. Rogers, “Epidermal
electronics,” Science vol. 333, no. 6044, 838-843, 2011.



Researchers to Watch

Klaus-Robert Mueller et al. (TU Berlin) — one of the leading
BCI groups
http://www.bbci.de/publications.html

Marcel van Gerven et al. (Donders) — BCl and Neuroscience
with a Bayesian approach
https://sites.google.com/a/distrep.org/distrep/publications

Ryota Tomioka (U Tokyo) — known for some technical
achievements

http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka

Karl Friston et al. (UC London) — working on relevant
underpinnings for neuroimaging (outside BClI)
http://www.fil.ion.ucl.ac.uk/Research/publications.html

Leading Statisticians and Machine Learners: Michael I. Jordan,
Andrew Ng, Lawrence Carin, Zoubin Ghahramani, Francis
Bach, Geoffrey Hinton, Ruslan Salakhutdinov, Yeh Whye Teh,
David Blei, ...
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Thanks!

Questions?



